Bibliography

 

 

 

 

[1]          P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review B, 136, 864 (1964)

 

[2]          W. Kohn and L. J. Sham, Phys. Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140, 1133 (1965)

 

[3]          Jean-Philippe Blaudeau, Mark P. McGrath, Larry A. Curtiss, Leo Radom, Extension of Gaussian-2 (G2) Theory to Molecules Containing Third Row Atoms K and Ca, J. Chem. Phys, 107, 5016 (1997)

 

[4]          T. H. Dunning Jr. and P. J. Hay, Methods of Electronic Structure Theory, edited by H. F. Schaefer III, Plenum, New York (1977)

 

[5]          A. D. Becke, Density-functional Exchange-energy Approximation with Correct Asymptotic Behavior, Phys. Rev, A38, 3098, (1988)

 

[6]          A. D. Becke, A New Mixing of Hartree-Fock and Local Density-Functional Theories, J Chem. Phys, 98, 1372 (1993)

 

[7]          A. D. Becke, Density Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys, 98, 5648 (1993)

 

[8]          S. Vosko, L. Wilk, and M. Nusair, Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis, Can. J. of Phys, 58, 1200 (1980)

 

[9]          J. Perdew, J. A. Chevary, S. H. Vosko, Koblar. K. A. Jackson, Mark R. Pederson D. J. Singh, Carlos Fiolhais, Atoms Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Physical Review B, 1992, 46, 6671 (1992)

 

[10]      J. Perdew, K..Burke and Y. Wang, Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System, Phys. Rev. B, 54, 16533 (1996)


[11]      J. A. Pople, M. Head-Gordan, D. J. Fox, K. Raghavachari, and L. A. Curtis, Gaussian-1 Theory: A General Procedure for Prediction of Molecular Energies, J. Chem. Phys, 90, 5622 (1989)

 

[12]      R. Krishnan and J. A. Pople, Approximate Fourth-Order Perturbation Theory of the Electron Correlation Energy, International J. Quantum Chemistry, XIV, 91 (1978)

 

[13]      G. Henkelman, B. P. Uberuaga, and H. Jonsson, A Climbing-Image NEB Method for Finding Sadldle Points and Minimum Energy Paths, J. Chem. Phys., 113, 9901 (2000)

 

[14]      H. Jonsson, G. Mills, and K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, in `Classical and Quantum, Dynamics in Condensed Phase Simulations', ed. B. J. Berne, G. Ciccotti and D., F. Coker (World Scientific, 1998), page 385

 

[15]      G. Henkelman and H. Jonsson, Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points, J. Chem. Phys., 113, 9978 (2000)

 

[16]      G. Henkelman, G. Jóhannesson, and H. Jónsson, Methods for Finding Saddle Points and Minimum Energy Path, Progress on Theoretical Chemistry and Physics, Ed. S. D. Schwartz, pg. 269, (Kluwar Academic Publishers, 2000)

 

[17]      L. Verlet, Computer Experiments on Classical Fluids. I. Thermodynamic Properties of Lenard-Jones Molecules, Phys. Rev. 159, 98-103 (1967)

 

[18]      A. Pavese, M. Catti, G. D. Price and R. A. Jackson, Interatomic Potentials for CaCO3 Polymorphs (Calcite and Aragonite) Fitted to Elastic and Vibrational Data, Physics and Chemistry of Minerals, 19, 80 (1992)

 

[19]      Theory of Atomic and Molecular Clusters, edited by J. Jellinek, Springer-Verlag New York, (1999)

 

[20]      S. Sugano and H. Koizumi, Microcluster Physics, Springer-Verlag, New York (1998)

 

[21]      T.P. Martin, U. Naher, T. Bergmann, H. Gohlich, and T. Lange, Observation of Icosahedral Shells and Subshells of Calcium Clusters, Chem. Phys. Letters, 183, 119 1999

 

[22]      C. R. Vidal, The Molecular Constants and Potential Energy Curves of the Ca2 A1Su+ -- X1Sg+ System From Laser Induced Fluorescence, J. Chem Physics, 72, 1864 (1980)

 

[23]      C. H. Chien, E. Blaisten-Barojas, and M. R. Pederson, Magnetic and Electronic Properties of Rhodium Clusters, Phys. Rev. A 58, 2196 (1998).

 

[24]      R. O. Jones, Molecular Bonding in Group IIA dimmers Be2 – Ba2, J. Chem. Phys. 71, 1300 (1979)

 

[25]      H. Stoll, J. Flad, E. Golka, Th. Kruger, A Comparative Study of Group IA and IIA Homonuclear Clusters, Surf. Science, 106, 251 (1981)

 

[26]      G. Pacchioni and J. Koutecky, The Bond Nature of Alkaline-Earth Homonuclear Metal Clusters, Chem. Phys, 71,181, (1982)

 

[27]      T. J. Lee, A..P..Rendell, and P. R. Taylor, The Structures, Binding Energies, and Vibrational Frequencies of Ca3 and Ca4 – An Application of the CCSD(T) Method, Theor. Chim. Acta, 83, 165 (1992)

 

[28]      G. Pacchioni and J. Koutecky, On the Nature of the Bonding in Mg4 and Ca4 Clusters, J. Chem. Phys, 77, 5850 (1982)

 

[29]      W. Bauschlicher,Jr., P. S. Bagus, and B. N. Cox, On Hybridization and Bonding in the Alkaline Earths: Be, Mg, and Ca, J. Chem. Phys, 77, 4032 (1982)

 

[30]      P. S. Bagus, C. J. Nelin, C. W. Bauschlicher, Jr, Cluster Properties Ab-Initio Theoretical Studies of Alkali and Alkaline-Earth Clusters, Surface Science, 156, 615 (1985)

 

[31]      J. N. Murrell and R. E. Mottram, Potential Energy Functions for Atomic Solids, Mol. Physics, 69, 1990, 571 (1990)

 

[32]      J. E. Hearn, R. L. Johnston, Modelling Calcium and Strontium Clusters With Many Body Potentials, J. Chem Phys, 107, 4674 (Sep. 1997)

 

[33]      K. M. Andersson, R. L. Johnston, and J. N. Murrell, Empirical Potential-Energy Function for Calcium Solids and Clusters, Phys. Rev. B, 49, 3089 (Feb. 1994)

 

[34]      J. W. Mirick, C. Chien, and E. Blaisten-Barojas, Electronic Structure of Calcium Clusters, Phys. Rev, 63 (2001)

 

[35]      F. van Duijneveldt, J. van Duijneveldt-van de Rijdt, and J. van Lenthe, State of the Art in Counterpoise Theory, Chem. Rev, 94, 1873 (1994)

 

[36]      C. S. Hansen, W. F. Calaway, B. V. Kng, M. J. Pellin, Energy and Yield Distributions of Calcium Atom and Clusters Undergoing 4 keV Ar+ ion Bombardment, Surface Science, 398, (1998)

 

[37]      W. J. Balfour and R. F. Whitlock, The Visible Absorption Spectrum of Diatomic Calcium, Can. J. Phys, 53, 472 (1975)

 

[38]      V. E. Bondybey and J. H. English, Laser-indued Fluorescence of the Calcium Dimer in a Supersonic Jet, Chem Phys Letters, 111, #3, pg195, (1984)

 

[39]      R. Thomas Hofmann and D. O. Harris, Laser Spectroscopy, Rotational assignment, and Perturbation analysis of the A 1Su+ ŕ X 1Sg+ Ca2 Red System, J. Chem. Phys, 85, 3749 (1986)

 

[40]      A M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998.

 

[41]      K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrad Reinhold, New York, 1979)

 

[42]      M. R. Pederson and K. A. Jackson, Variational Mesh for Quantum-Mechanical Simulations, Phys. Rev. B 41, 7453 (1990)

 

[43]      J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd Ed., (1996)

 

[44]      C. Gonzales and H. B. J. Schlegal, J. Chem. Phys, 90, 2154 (1989)

 

[45]      C. Gonzales and H. B. J. Schlegal, J. Phys. Chem, 94, 5523 (1990)

 

[46]      J. W. McCaffrey, J. R. Anderson, and D. Papaconstantopoulos, Electronic Structure of Calcium as a Function of the Lattice Constant, Phys. Rev, B7, 674 (1973)

 

[47]      Chemistry of GB (sarin), http://www.mitretek.org, Information from Mitretek Systems

 

[48]      Y. Yang, J. A. Baker, and J. R. Ward, Decontamination of Chemical Warfare Weapons, Chem. Rev, 92, 1729 (1992)

 

[49]      M. Satu, Chemical Warfare Agents, (1992)

 

[50]      Commission on Engineering and Technical Systems, Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons  (1999)

 

[51]      F. Flanigan, Hazardous Cloud Imaging:  A New Way of Using Passive Infrared, Applied Optics, 36(27), 7027 (1997)

 

[52]      A. F. Flanigan, Prediction of the Limits of Detection of Hazardous Vapors by Passive Infrared with the Use of MODTRAN, Applied Optics, 35(30), 6090 (1996)

 

[53]      L. Jenkins, O. Manuel Uy, and G. M. Murray, Polymer-Based Lanthanide Luminescent Sensor for Detection of the Hydrolysis Product of the Nerve Agent Soman in Water, Analytical Chemistry, 71(2), 373 (1999)

 

[54]      P. Politzer and K. Jayasuriya, A Computational Analysis and Comparison of Some Sarin and Soman Analogues, J. Mol. Struc. (Theochem), 134, 381 (1986)

 

[55]      C. Samuels, J. O. Jensen, R. D. Suenram, A. H. Walker, and D. Woolard, Microwave Spectroscopy of Chemical Warfare Agents: Prospects for Remote Sensing, SPIE, 3703, 121 (1999)

 

[56]      G. Adams, R. Amos, N.Handy, R. Kroutil, The A Priori Synthesis of Infrared Spectra for Chemical Agents, 1988 Army Science Conference (1988)

 

[57]      G. Adams, N. Handy, R. Amos, Ab Initio Computation of Infrared Spectra, 1988 Army Science Conference (1988)

 

[58]      A. Walker, R. Suenram, A. Samuels, J. Jensen, M. Ellzy, J. Lochner, D. Zeroka, Rotational Spectrum of Sarin, J. Mol. Spect, 207, 77, (2001)


 

[59]      D.-h. Lu, T. N. Truong, V. S. Melissas, G. C. Lynch, Y.-P. Liu, B. C. Garrett, R. Steckler, A. D. Isaacson, S. N. Rai, G. C. Hancock, J. G. Lauderdale, T. Joseph, and D. G. Truhlar, POLYRATE 4: A New Version of a Computer Program for the Calculation of Chemical Reaction Rates for Polyatomics, Comp. Phys. Comm. 71, 235-262 (1992)

 

[60]      R. Steckler, W.–P. Hu, Y.–P. Liu, G. C. Lynch, B. C. Garrett, A. D. Isaacson, D.–h. Lu, V. S. Melissas, T. N. Truong, S. N. Rai, G. C. Hancock, J. G. Lauderdale, T. Joseph, and D. G. Truhlar, Computer Physics Communication, 88, pp.341-343 (1995)

 

[61]      Courtesy of Michael Davidson, Molecular Expressions, http://micro.magnetic.fsu.edu (2002)

 

[62]      A. Skinner, J. LaFemina, H. J. F. Jansen, Structure and Bonding of Calcite: A Theoretical Study, American Mineralogist, 79, 205 (1994)

 

[63]      R. K. Singh, N. K. Gaur, S. L. Chaplot, Lattice Dynamics of Molecular Molecular Calcite Crystals, Phys. Rev. B, 35(9), 4462 (1987)

 

[64]      M. T. Dove, B. Winkler, M. Leslie, M. J. Harris, E. K. H. Salje, A New Interatomic Potential Model for Calcite: Applications to Lattice Dynamics Studies, Phase Transitions, and Isotope Fractionation, American Mineralogist, 77, 244 (1992)

[65]      Y. Mao, P. D. Siders, Molecular Hartree-Fock Model of Calcium Carbonate, J. of Mol. Structure (Theochem), 419, 173 (1997)

 

[66]      M. Catti, A. Pavese, E. Apra, and C. Roetti, Quantum Mechanical Hartree-Fock Study of Calcite (CaCO3) at Variable Pressure, and Comparison with Magnesite (MGCO3), Phys. Chem. Minerals, 20, 104 (1993)

 

[67]      W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes, Cambridge University Press (1989)

 

[68]      CRC Handbook of Physics and Chemistry, edited by R. C. Weast (CRC, Boca Rotan, Fla., 1981), pp. D-89 and F-214

 

[69]      P. L. DeVries, A First Course in Computational Physics, John Wiley & Sons, Inc (1994)

 


 

 

 

CURRICULUM VITAE

 

 

 

 

Jeffrey W. Mirick received his Bachelor of Science degree in Physics in 1979 and a Master of Science degree in Physics in 1983 from the University of South Florida.  The publications include:

 

1.            Jeffrey W. Mirick, Chang-Hong Chien, and Estela Blaisten-Barojas, Electronic Structure of Calcium Clusters, Phys. Rev. A (Feb 2001)

2.            R. H. Hunt, W. N. Shelton, W. B. Cook, O. N. Bignall, J. W. Mirick, F. A. Flaherty, Torsion-Rotation Absorption Line Assignments in the Symmetric CH-Stretch Fundamentals of Methanol, J. Mol. Spect, V149, 252 (1991)

3.            G. S. He, J. W. Mirick, R. S. Chang, N. Djeu, Intensity Dependence of Two-Wave Mixing absorption in a resonant medium, Optics Letters, V12, 582, (1987)

 

Presentations at scientific conferences include:

 

1.            Jeffrey W. Mirick and Estela Blaisten-Barojas, Structure, Energetics, and Vibrational Analysis of Calcium Clusters, American Physical Society Meeting, Washington, DC, April 2001

2.            Jeffrey W. Mirick and Estela Blaisten-Barojas, Calcium Clusters: Structures and Energetics, ACS Middle Atlantic Regional Meeting, American Chemical Society, May 2000

3.            Jeffrey W. Mirick and Estela Blaisten-Barojas, Vibrational Analysis of Calcium Clusters, Virginia Academy of Science, Norfolk, Va., May 1999

 

4.            Jeffrey W. Mirick, Hemispherical Ion Beam Modes, Plasma Physics Poster Session, October 1982

 

 

 

Table of Contents

Home Page