[1] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review B, 136, 864 (1964)
[2]
W.
Kohn and L. J. Sham, Phys. Self-Consistent Equations Including Exchange and
Correlation Effects, Phys. Rev. A 140, 1133 (1965)
[3] Jean-Philippe Blaudeau, Mark P. McGrath, Larry A. Curtiss, Leo Radom, Extension of Gaussian-2 (G2) Theory to Molecules Containing Third Row Atoms K and Ca, J. Chem. Phys, 107, 5016 (1997)
[4] T. H. Dunning Jr. and P. J. Hay, Methods of Electronic Structure Theory, edited by H. F. Schaefer III, Plenum, New York (1977)
[5] A. D. Becke, Density-functional Exchange-energy Approximation with Correct Asymptotic Behavior, Phys. Rev, A38, 3098, (1988)
[6] A. D. Becke, A New Mixing of Hartree-Fock and Local Density-Functional Theories, J Chem. Phys, 98, 1372 (1993)
[7] A. D. Becke, Density Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys, 98, 5648 (1993)
[8] S. Vosko, L. Wilk, and M. Nusair, Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis, Can. J. of Phys, 58, 1200 (1980)
[9] J. Perdew, J. A. Chevary, S. H. Vosko, Koblar. K. A. Jackson, Mark R. Pederson D. J. Singh, Carlos Fiolhais, Atoms Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Physical Review B, 1992, 46, 6671 (1992)
[10] J. Perdew, K..Burke and Y. Wang, Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System, Phys. Rev. B, 54, 16533 (1996)
[11] J. A. Pople, M. Head-Gordan, D. J. Fox, K. Raghavachari, and L. A. Curtis, Gaussian-1 Theory: A General Procedure for Prediction of Molecular Energies, J. Chem. Phys, 90, 5622 (1989)
[12] R. Krishnan and J. A. Pople, Approximate Fourth-Order Perturbation Theory of the Electron Correlation Energy, International J. Quantum Chemistry, XIV, 91 (1978)
[13] G. Henkelman, B. P. Uberuaga, and H. Jonsson, A Climbing-Image NEB Method for Finding Sadldle Points and Minimum Energy Paths, J. Chem. Phys., 113, 9901 (2000)
[14] H. Jonsson, G. Mills, and K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, in `Classical and Quantum, Dynamics in Condensed Phase Simulations', ed. B. J. Berne, G. Ciccotti and D., F. Coker (World Scientific, 1998), page 385
[15] G. Henkelman and H. Jonsson, Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points, J. Chem. Phys., 113, 9978 (2000)
[16] G. Henkelman, G. Jóhannesson, and H. Jónsson, Methods for Finding Saddle Points and Minimum Energy Path, Progress on Theoretical Chemistry and Physics, Ed. S. D. Schwartz, pg. 269, (Kluwar Academic Publishers, 2000)
[17] L. Verlet, Computer Experiments on Classical Fluids. I. Thermodynamic Properties of Lenard-Jones Molecules, Phys. Rev. 159, 98-103 (1967)
[18] A. Pavese, M. Catti, G. D. Price and R. A. Jackson, Interatomic Potentials for CaCO3 Polymorphs (Calcite and Aragonite) Fitted to Elastic and Vibrational Data, Physics and Chemistry of Minerals, 19, 80 (1992)
[19] Theory of Atomic and Molecular Clusters, edited by J. Jellinek, Springer-Verlag New York, (1999)
[20] S. Sugano and H. Koizumi, Microcluster Physics, Springer-Verlag, New York (1998)
[21]
T.P.
Martin, U. Naher, T. Bergmann, H. Gohlich, and T. Lange, Observation of
Icosahedral Shells and Subshells of Calcium Clusters, Chem. Phys. Letters, 183,
119 1999
[22] C. R. Vidal, The Molecular Constants and Potential Energy Curves of the Ca2 A1Su+ -- X1Sg+ System From Laser Induced Fluorescence, J. Chem Physics, 72, 1864 (1980)
[23]
C.
H. Chien, E. Blaisten-Barojas, and M. R. Pederson, Magnetic and Electronic
Properties of Rhodium Clusters, Phys. Rev. A 58, 2196 (1998).
[24] R. O. Jones, Molecular Bonding in Group IIA dimmers Be2 – Ba2, J. Chem. Phys. 71, 1300 (1979)
[25] H. Stoll, J. Flad, E. Golka, Th. Kruger, A Comparative Study of Group IA and IIA Homonuclear Clusters, Surf. Science, 106, 251 (1981)
[26]
G. Pacchioni and J. Koutecky, The Bond Nature of
Alkaline-Earth Homonuclear Metal Clusters, Chem. Phys, 71,181, (1982)
[27] T. J. Lee, A..P..Rendell, and P. R. Taylor, The Structures, Binding Energies, and Vibrational Frequencies of Ca3 and Ca4 – An Application of the CCSD(T) Method, Theor. Chim. Acta, 83, 165 (1992)
[28] G. Pacchioni and J. Koutecky, On the Nature of the Bonding in Mg4 and Ca4 Clusters, J. Chem. Phys, 77, 5850 (1982)
[29] W. Bauschlicher,Jr., P. S. Bagus, and B. N. Cox, On Hybridization and Bonding in the Alkaline Earths: Be, Mg, and Ca, J. Chem. Phys, 77, 4032 (1982)
[30] P. S. Bagus, C. J. Nelin, C. W. Bauschlicher, Jr, Cluster Properties Ab-Initio Theoretical Studies of Alkali and Alkaline-Earth Clusters, Surface Science, 156, 615 (1985)
[31] J. N. Murrell and R. E. Mottram, Potential Energy Functions for Atomic Solids, Mol. Physics, 69, 1990, 571 (1990)
[32] J. E. Hearn, R. L. Johnston, Modelling Calcium and Strontium Clusters With Many Body Potentials, J. Chem Phys, 107, 4674 (Sep. 1997)
[33] K. M. Andersson, R. L. Johnston, and J. N. Murrell, Empirical Potential-Energy Function for Calcium Solids and Clusters, Phys. Rev. B, 49, 3089 (Feb. 1994)
[34] J. W. Mirick, C. Chien, and E. Blaisten-Barojas, Electronic Structure of Calcium Clusters, Phys. Rev, 63 (2001)
[35] F. van Duijneveldt, J. van Duijneveldt-van de Rijdt, and J. van Lenthe, State of the Art in Counterpoise Theory, Chem. Rev, 94, 1873 (1994)
[36] C. S. Hansen, W. F. Calaway, B. V. Kng, M. J. Pellin, Energy and Yield Distributions of Calcium Atom and Clusters Undergoing 4 keV Ar+ ion Bombardment, Surface Science, 398, (1998)
[37] W. J. Balfour and R. F. Whitlock, The Visible Absorption Spectrum of Diatomic Calcium, Can. J. Phys, 53, 472 (1975)
[38] V. E. Bondybey and J. H. English, Laser-indued Fluorescence of the Calcium Dimer in a Supersonic Jet, Chem Phys Letters, 111, #3, pg195, (1984)
[39] R. Thomas Hofmann and D. O. Harris, Laser Spectroscopy, Rotational assignment, and Perturbation analysis of the A 1Su+ ŕ X 1Sg+ Ca2 Red System, J. Chem. Phys, 85, 3749 (1986)
[40] A M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998.
[41]
K.
P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrad
Reinhold, New York, 1979)
[42]
M.
R. Pederson and K. A. Jackson, Variational Mesh for Quantum-Mechanical
Simulations, Phys. Rev. B 41, 7453 (1990)
[43] J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd Ed., (1996)
[44] C. Gonzales and H. B. J. Schlegal, J. Chem. Phys, 90, 2154 (1989)
[45] C. Gonzales and H. B. J. Schlegal, J. Phys. Chem, 94, 5523 (1990)
[46] J. W. McCaffrey, J. R. Anderson,
and D. Papaconstantopoulos, Electronic Structure of Calcium as a Function of
the Lattice Constant, Phys. Rev, B7, 674 (1973)
[47] Chemistry of GB (sarin), http://www.mitretek.org, Information from Mitretek Systems
[48] Y. Yang, J. A. Baker, and J. R. Ward, Decontamination of Chemical Warfare Weapons, Chem. Rev, 92, 1729 (1992)
[49] M. Satu, Chemical Warfare Agents, (1992)
[50] Commission on Engineering and Technical Systems, Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons (1999)
[51] F. Flanigan, Hazardous Cloud Imaging: A New Way of Using Passive Infrared, Applied Optics, 36(27), 7027 (1997)
[52] A. F. Flanigan, Prediction of the Limits of Detection of Hazardous Vapors by Passive Infrared with the Use of MODTRAN, Applied Optics, 35(30), 6090 (1996)
[53] L. Jenkins, O. Manuel Uy, and G. M. Murray, Polymer-Based Lanthanide Luminescent Sensor for Detection of the Hydrolysis Product of the Nerve Agent Soman in Water, Analytical Chemistry, 71(2), 373 (1999)
[54] P. Politzer and K. Jayasuriya, A Computational Analysis and Comparison of Some Sarin and Soman Analogues, J. Mol. Struc. (Theochem), 134, 381 (1986)
[55] C. Samuels, J. O. Jensen, R. D. Suenram, A. H. Walker, and D. Woolard, Microwave Spectroscopy of Chemical Warfare Agents: Prospects for Remote Sensing, SPIE, 3703, 121 (1999)
[56] G. Adams, R. Amos, N.Handy, R. Kroutil, The A Priori Synthesis of Infrared Spectra for Chemical Agents, 1988 Army Science Conference (1988)
[57] G. Adams, N. Handy, R. Amos, Ab Initio Computation of Infrared Spectra, 1988 Army Science Conference (1988)
[58] A. Walker, R. Suenram, A. Samuels, J. Jensen, M. Ellzy, J. Lochner, D. Zeroka, Rotational Spectrum of Sarin, J. Mol. Spect, 207, 77, (2001)
[59] D.-h. Lu, T. N. Truong, V. S. Melissas, G. C. Lynch, Y.-P. Liu, B. C. Garrett, R. Steckler, A. D. Isaacson, S. N. Rai, G. C. Hancock, J. G. Lauderdale, T. Joseph, and D. G. Truhlar, POLYRATE 4: A New Version of a Computer Program for the Calculation of Chemical Reaction Rates for Polyatomics, Comp. Phys. Comm. 71, 235-262 (1992)
[60] R. Steckler, W.–P. Hu, Y.–P. Liu, G. C. Lynch, B. C. Garrett, A. D. Isaacson, D.–h. Lu, V. S. Melissas, T. N. Truong, S. N. Rai, G. C. Hancock, J. G. Lauderdale, T. Joseph, and D. G. Truhlar, Computer Physics Communication, 88, pp.341-343 (1995)
[61] Courtesy of Michael Davidson, Molecular Expressions, http://micro.magnetic.fsu.edu (2002)
[62] A. Skinner, J. LaFemina, H. J. F. Jansen, Structure and Bonding of Calcite: A Theoretical Study, American Mineralogist, 79, 205 (1994)
[63] R. K. Singh, N. K. Gaur, S. L. Chaplot, Lattice Dynamics of Molecular Molecular Calcite Crystals, Phys. Rev. B, 35(9), 4462 (1987)
[64] M. T. Dove, B. Winkler, M. Leslie, M. J. Harris, E. K. H. Salje, A New Interatomic Potential Model for Calcite: Applications to Lattice Dynamics Studies, Phase Transitions, and Isotope Fractionation, American Mineralogist, 77, 244 (1992)
[65] Y. Mao, P. D. Siders, Molecular Hartree-Fock Model of Calcium Carbonate, J. of Mol. Structure (Theochem), 419, 173 (1997)
[66] M. Catti, A. Pavese, E. Apra, and C. Roetti, Quantum Mechanical Hartree-Fock Study of Calcite (CaCO3) at Variable Pressure, and Comparison with Magnesite (MGCO3), Phys. Chem. Minerals, 20, 104 (1993)
[67] W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes, Cambridge University Press (1989)
[68] CRC Handbook of Physics and Chemistry, edited by R. C. Weast (CRC, Boca Rotan, Fla., 1981), pp. D-89 and F-214
[69] P. L. DeVries, A First Course in Computational Physics, John Wiley & Sons, Inc (1994)
CURRICULUM VITAE
Jeffrey W. Mirick received his Bachelor of Science degree in Physics in 1979 and a Master of Science degree in Physics in 1983 from the University of South Florida. The publications include:
1.
Jeffrey W. Mirick, Chang-Hong Chien, and
Estela Blaisten-Barojas, Electronic Structure of Calcium Clusters, Phys.
Rev. A (Feb 2001)
2. R. H. Hunt, W. N. Shelton, W. B. Cook, O. N. Bignall, J. W. Mirick, F. A. Flaherty, Torsion-Rotation Absorption Line Assignments in the Symmetric CH-Stretch Fundamentals of Methanol, J. Mol. Spect, V149, 252 (1991)
3.
G. S. He, J. W. Mirick, R. S. Chang, N. Djeu, Intensity
Dependence of Two-Wave Mixing absorption in a resonant medium, Optics
Letters, V12, 582, (1987)
Presentations at scientific
conferences include:
1.
Jeffrey W. Mirick and Estela Blaisten-Barojas, Structure, Energetics, and
Vibrational Analysis of Calcium Clusters, American Physical Society
Meeting, Washington, DC, April 2001
2.
Jeffrey W. Mirick and Estela Blaisten-Barojas, Calcium Clusters:
Structures and Energetics, ACS Middle
Atlantic Regional Meeting, American Chemical Society, May 2000
3.
Jeffrey W. Mirick and Estela Blaisten-Barojas, Vibrational Analysis of
Calcium Clusters, Virginia Academy of Science, Norfolk, Va., May 1999
4.
Jeffrey W. Mirick, Hemispherical Ion Beam Modes, Plasma Physics Poster Session, October 1982